前言

在人工智能技术迅猛发展的浪潮中,昇腾AI处理器作为国产算力先锋,其核心软件平台CANN正通过技术革新不断降低开发门槛。当业界热议AIGC(生成式人工智能)在内容创作领域的变革时,CANN社区已悄然开启一场更深远的革命:让AI辅助甚至主导AI计算本身的核心——算子开发。本文将以CANN仓库中的pyasc语言项目为切入点,深入探讨AIGC技术在算子开发领域的初步实践与未来展望。

一、CANN生态与算子开发的演进之路

1.1 CANN:AI算力的基石架构

CANN(Compute Architecture for Neural Networks)是华为针对AI场景推出的异构计算架构,在AI技术栈中扮演着承上启下的关键角色。根据仓库内容,CANN“对上支持多种AI框架,对下服务AI处理器与编程”,是提升昇腾AI处理器计算效率的关键平台。

从仓库中的项目组织可以看出,CANN生态已形成完整的算子体系:

  • 领域专用算子库:神经网络类(ops-nn)、transformer类(ops-transformer)、数学类(ops-math)、图像处理类(ops-cv)等
  • 编译器与运行时:GE(Graph Engine)图编译器、运行时组件等
  • 开发工具与语言pyasc语言、PyPTO编程范式等

这种分层架构为AI写算子奠定了坚实基础。

1.2 算子开发的传统挑战

传统NPU算子开发面临多重挑战:

  1. 硬件专业知识门槛高:需要深入理解昇腾处理器架构、内存层次和指令集
  2. 开发流程复杂:从算法设计到性能优化涉及多个环节
  3. 调试难度大:硬件行为难以直观观察和调试
  4. 性能优化繁琐:需要反复试验不同优化策略

这些挑战使得算子开发成为只有少数专家才能掌握的高阶技能,严重制约了AI模型的创新速度。

二、pyasc语言:连接Python生态与昇腾硬件的桥梁

2.1 pyasc语言的设计哲学

根据仓库描述,pyasc是“昇腾AI处理器专用的算子程序开发语言,原生支持C和C++标准规范,主要由类库和语言扩展层构成,提供多层级API,满足多维场景算子开发诉求”。

pyasc的核心设计理念可概括为:

  • Pythonic体验:提供类似Python的开发体验,降低学习成本
  • 硬件高效映射:确保代码能高效映射到昇腾硬件执行
  • 多层抽象:提供不同层次的API,兼顾易用性与灵活性
# 一个简单的pyasc算子示例:向量加法
import pyasc

@pyasc.kernel
def vector_add(a, b, c, n):
    # 获取全局线程ID
    idx = pyasc.get_global_id(0)
    
    # 边界检查
    if idx < n:
        c[idx] = a[idx] + b[idx]

# 使用pyasc编译并执行算子
def run_vector_add():
    n = 1024
    a = pyasc.array(n, dtype=pyasc.float32)
    b = pyasc.array(n, dtype=pyasc.float32)
    c = pyasc.array(n, dtype=pyasc.float32)
    
    # 初始化数据
    a.fill(1.0)
    b.fill(2.0)
    
    # 执行算子
    grid_dim = (n + 255) // 256  # 计算网格维度
    vector_add[grid_dim, 256](a, b, c, n)
    
    # 验证结果
    print("第一个元素:", c[0])  # 应输出3.0
    
    return c

2.2 pyasc与PyPTO的协同

仓库中提到的PyPTO(Parallel Tensor/Tile Operation)是“Parallel Tensor/Tile Operation编程范式”,与pyasc形成互补:

  • PyPTO:专注于张量和Tile级并行操作,提供高级抽象
  • pyasc:提供更底层的算子编程能力

两者结合形成了从高级描述到底层实现的全栈开发能力。

三、AIGC赋能算子开发的技术路径

3.1 AIGC在代码生成中的优势

生成式AI在代码领域已展现出强大能力:

  1. 模式识别:能从大量现有代码中学习编程模式和最佳实践
  2. 上下文理解:能理解自然语言描述并转换为代码逻辑
  3. 代码补全:能根据部分代码预测完整实现
  4. 多语言转换:能在不同编程语言间转换实现逻辑

这些能力恰好对应了算子开发中的痛点:将算法描述转换为硬件优化代码。

3.2 基于AIGC的算子开发工作流

结合pyasc语言,可以构建如下的AIGC辅助算子开发工作流:

# AIGC辅助算子开发框架示例
class AIGCOperatorDeveloper:
    def __init__(self, model_name="codegen-multi"):
        """
        初始化AIGC算子开发助手
        """
        self.model_name = model_name
        self.templates = self.load_operator_templates()
        self.optimization_rules = self.load_optimization_rules()
        
    def load_operator_templates(self):
        """加载算子模板库"""
        return {
            "elementwise": {
                "description": "逐元素操作,如加、减、乘、除等",
                "template": self.elementwise_template,
                "optimizations": ["vectorization", "loop_unrolling"]
            },
            "reduction": {
                "description": "归约操作,如求和、最大值、平均值等",
                "template": self.reduction_template,
                "optimizations": ["parallel_reduction", "shared_memory"]
            },
            "matrix_multiplication": {
                "description": "矩阵乘法操作",
                "template": self.matmul_template,
                "optimizations": ["tiling", "double_buffering", "software_pipelining"]
            }
        }
    
    def generate_operator_from_nl(self, natural_language_desc):
        """
        从自然语言描述生成算子代码
        """
        # 步骤1: 解析自然语言,识别算子类型和参数
        operator_type, params = self.parse_natural_language(natural_language_desc)
        
        # 步骤2: 选择对应模板
        template_info = self.templates.get(operator_type, {})
        
        # 步骤3: 使用AIGC模型生成初步代码
        prompt = self.build_prompt(template_info, params)
        raw_code = self.query_aigc_model(prompt)
        
        # 步骤4: 代码验证与优化
        optimized_code = self.optimize_code(raw_code, template_info["optimizations"])
        
        # 步骤5: 生成测试代码
        test_code = self.generate_test_code(optimized_code, params)
        
        return {
            "operator_code": optimized_code,
            "test_code": test_code,
            "metadata": {
                "type": operator_type,
                "params": params,
                "optimizations_applied": template_info["optimizations"]
            }
        }
    
    def elementwise_template(self, params):
        """逐元素操作模板"""
        template = """
import pyasc

@pyasc.kernel
def {kernel_name}({input_params}, {output_param}, n):
    idx = pyasc.get_global_id(0)
    if idx < n:
        {operation_logic}
"""
        return template
    
    def parse_natural_language(self, text):
        """解析自然语言描述(简化示例)"""
        # 在实际应用中,这里会使用NLP模型进行解析
        text_lower = text.lower()
        
        if "add" in text_lower or "sum" in text_lower or "加法" in text:
            op_type = "elementwise"
            operation = "c[idx] = a[idx] + b[idx]"
            params = {"inputs": ["a", "b"], "output": "c", "operation": operation}
        elif "multiply" in text_lower or "product" in text_lower or "乘法" in text:
            op_type = "elementwise"
            operation = "c[idx] = a[idx] * b[idx]"
            params = {"inputs": ["a", "b"], "output": "c", "operation": operation}
        elif "matrix" in text_lower and "multiplication" in text_lower:
            op_type = "matrix_multiplication"
            params = {"M": 256, "N": 256, "K": 256}
        else:
            op_type = "unknown"
            params = {}
            
        return op_type, params
    
    def optimize_code(self, code, optimizations):
        """应用优化策略"""
        optimized_code = code
        
        for opt in optimizations:
            if opt == "vectorization":
                optimized_code = self.apply_vectorization(optimized_code)
            elif opt == "tiling":
                optimized_code = self.apply_tiling(optimized_code)
            elif opt == "double_buffering":
                optimized_code = self.apply_double_buffering(optimized_code)
                
        return optimized_code
    
    def apply_vectorization(self, code):
        """应用向量化优化"""
        # 在实际应用中,这里会进行复杂的代码变换
        vectorized_code = code.replace(
            "c[idx] = a[idx] + b[idx]",
            "# 向量化版本\n        # 使用float4进行向量化加载和存储\n        if idx + 3 < n:\n            a_vec = pyasc.load_vector(a, idx)\n            b_vec = pyasc.load_vector(b, idx)\n            c_vec = a_vec + b_vec\n            pyasc.store_vector(c, idx, c_vec)\n        else:\n            # 处理尾部元素\n            for i in range(4):\n                if idx + i < n:\n                    c[idx + i] = a[idx + i] + b[idx + i]"
        )
        return vectorized_code

# 使用示例
developer = AIGCOperatorDeveloper()
result = developer.generate_operator_from_nl(
    "实现一个向量加法算子,输入是两个float32数组,输出是它们的和"
)

print("生成的算子代码:")
print(result["operator_code"])
print("\n生成的测试代码:")
print(result["test_code"])

四、实践案例:AIGC开发Transformer算子

4.1 Transformer算子的复杂性

仓库中特别提到了ops-transformer项目,这是“CANN提供的transformer类大模型算子库”。Transformer模型包含多种复杂算子:

  1. 注意力机制:多头注意力、缩放点积注意力
  2. 前馈网络:位置感知前馈网络
  3. 归一化层:层归一化、残差连接
  4. 激活函数:GELU、Swish等

这些算子的高性能实现极具挑战性,正是AIGC可以发挥价值的领域。

4.2 AIGC生成注意力算子的实践

# AIGC生成多头注意力算子的示例流程
class TransformerOperatorGenerator:
    def __init__(self):
        self.pyasc_apis = self.load_pyasc_apis()
        self.attention_patterns = self.load_attention_patterns()
    
    def generate_multihead_attention(self, config):
        """
        生成多头注意力算子
        
        Args:
            config: 配置字典,包含hidden_size、num_heads等参数
        """
        # 构建自然语言描述
        nl_description = self.build_attention_description(config)
        
        # 调用AIGC模型生成代码
        generated_code = self.query_aigc_for_attention(nl_description)
        
        # 针对昇腾硬件优化
        optimized_code = self.optimize_for_ascend(generated_code, config)
        
        # 生成测试与验证代码
        test_suite = self.generate_attention_tests(optimized_code, config)
        
        return {
            "operator": optimized_code,
            "tests": test_suite,
            "benchmark": self.generate_benchmark_script(config)
        }
    
    def build_attention_description(self, config):
        """构建自然语言描述"""
        return f"""
实现一个多头注意力算子,具体要求如下:
1. 隐藏层大小: {config['hidden_size']}
2. 注意力头数: {config['num_heads']}
3. 头维度: {config['hidden_size'] // config['num_heads']}
4. 支持掩码: {config.get('use_mask', True)}
5. 支持dropout: {config.get('use_dropout', False)}
6. 使用float16精度
7. 针对昇腾AI处理器优化
8. 使用{config.get('optimization_level', '高级')}优化级别
"""
    
    def optimize_for_ascend(self, code, config):
        """针对昇腾处理器优化代码"""
        optimizations = []
        optimized_code = code
        
        # 应用tiling优化
        if config.get("use_tiling", True):
            optimized_code = self.apply_attention_tiling(optimized_code, config)
            optimizations.append("tiling")
        
        # 应用内存布局优化
        if config.get("optimize_memory_layout", True):
            optimized_code = self.optimize_memory_layout(optimized_code)
            optimizations.append("memory_layout")
        
        # 应用指令级优化
        if config.get("use_special_instructions", True):
            optimized_code = self.use_ascend_special_instructions(optimized_code)
            optimizations.append("special_instructions")
        
        # 添加性能注释
        optimized_code = self.add_performance_comments(optimized_code, optimizations)
        
        return optimized_code
    
    def apply_attention_tiling(self, code, config):
        """应用注意力计算的tiling优化"""
        # 在实际实现中,这里会有复杂的代码变换逻辑
        tiled_code = f"""
# ============================================
# 经过tiling优化的多头注意力实现
# 配置: hidden_size={config['hidden_size']}, num_heads={config['num_heads']}
# ============================================

import pyasc

# Tile大小配置,根据昇腾处理器缓存大小优化
Q_TILE_SIZE = {min(128, config['hidden_size'] // config['num_heads'])}
K_TILE_SIZE = {min(128, config['hidden_size'] // config['num_heads'])}
V_TILE_SIZE = {min(128, config['hidden_size'] // config['num_heads'])}

@pyasc.kernel
def multihead_attention_tiled(
    Q, K, V,        # 输入张量: [batch_size, seq_len, hidden_size]
    output,         # 输出张量: [batch_size, seq_len, hidden_size]
    attention_mask, # 注意力掩码(可选)
    batch_size,
    seq_len,
    hidden_size,
    num_heads
):
    # 计算头维度
    head_dim = hidden_size // num_heads
    
    # 获取三维线程索引: [batch, head, position]
    batch_idx = pyasc.get_global_id(0)
    head_idx = pyasc.get_global_id(1)
    tile_idx = pyasc.get_global_id(2)
    
    if batch_idx >= batch_size or head_idx >= num_heads:
        return
    
    # 计算当前tile的范围
    q_start = tile_idx * Q_TILE_SIZE
    q_end = min((tile_idx + 1) * Q_TILE_SIZE, seq_len)
    
    # 为当前tile分配共享内存
    shared_q = pyasc.shared_array((Q_TILE_SIZE, head_dim), dtype=pyasc.float16)
    shared_scores = pyasc.shared_array((Q_TILE_SIZE, K_TILE_SIZE), dtype=pyasc.float32)
    
    # 分块处理Q
    for q_pos in range(q_start, q_end, Q_TILE_SIZE):
        # 加载Q的当前tile到共享内存
        load_q_tile(Q, shared_q, batch_idx, head_idx, q_pos, 
                   min(q_pos + Q_TILE_SIZE, seq_len), head_dim)
        
        # 分块处理K
        for k_start in range(0, seq_len, K_TILE_SIZE):
            k_end = min(k_start + K_TILE_SIZE, seq_len)
            
            # 计算当前Q tile与K tile的注意力分数
            compute_attention_scores_tiled(
                shared_q, K, shared_scores,
                batch_idx, head_idx,
                q_pos, min(q_pos + Q_TILE_SIZE, seq_len),
                k_start, k_end,
                head_dim
            )
            
            # 应用softmax(分块稳定版本)
            apply_block_softmax(shared_scores, attention_mask,
                               q_pos, k_start, k_end - k_start)
            
            # 分块处理V并累加结果
            accumulate_attention_output(
                shared_scores, V, output,
                batch_idx, head_idx,
                q_pos, min(q_pos + Q_TILE_SIZE, seq_len),
                k_start, k_end,
                head_dim
            )
    
    # 同步所有线程
    pyasc.barrier()
    
# 辅助函数定义
def load_q_tile(Q, shared_q, batch_idx, head_idx, q_start, q_end, head_dim):
    # 实现Q tile加载逻辑
    pass

def compute_attention_scores_tiled(shared_q, K, shared_scores, 
                                  batch_idx, head_idx,
                                  q_start, q_end,
                                  k_start, k_end,
                                  head_dim):
    # 实现分块注意力分数计算
    pass

def apply_block_softmax(scores, mask, q_offset, k_offset, k_size):
    # 实现分块稳定softmax
    pass

def accumulate_attention_output(scores, V, output,
                               batch_idx, head_idx,
                               q_start, q_end,
                               k_start, k_end,
                               head_dim):
    # 实现分块结果累加
    pass
"""
        return tiled_code

# 使用示例
config = {
    "hidden_size": 768,
    "num_heads": 12,
    "use_mask": True,
    "use_dropout": False,
    "optimization_level": "高级",
    "use_tiling": True,
    "optimize_memory_layout": True
}

generator = TransformerOperatorGenerator()
attention_operator = generator.generate_multihead_attention(config)

print("生成的多头注意力算子(部分):")
print(attention_operator["operator"][:1000])  # 打印前1000字符

五、AIGC算子开发的技术挑战与解决方案

5.1 技术挑战

尽管AIGC在算子开发中潜力巨大,但仍面临诸多挑战:

挑战领域 具体问题 潜在影响
代码正确性 生成的代码可能存在逻辑错误或边界条件问题 算子功能错误,模型输出异常
性能优化 AIGC难以掌握硬件特定的深度优化技巧 性能低于手写优化代码
调试难度 生成代码的可读性和可调试性可能较差 问题定位困难,维护成本高
硬件适配 对不同硬件特性的理解可能不足 无法充分利用特定硬件优势

5.2 解决方案:混合智能开发模式

为解决上述挑战,我们提出混合智能开发模式:

class HybridIntelligenceOperatorDevelopment:
    """
    混合智能算子开发框架:
    结合AIGC的创造力与人类专家的经验
    """
    
    def __init__(self):
        self.aigc_component = AIGCOperatorDeveloper()
        self.expert_knowledge = self.load_expert_knowledge()
        self.validation_suite = OperatorValidationSuite()
        self.performance_analyzer = AscendPerformanceAnalyzer()
    
    def develop_operator(self, requirements):
        """
        混合智能算子开发流程
        """
        development_stages = [
            self.stage1_requirement_analysis,
            self.stage2_aigc_generation,
            self.stage3_expert_refinement,
            self.stage4_validation,
            self.stage5_performance_tuning,
            self.stage6_integration
        ]
        
        results = {}
        current_artifact = {"requirements": requirements}
        
        for i, stage in enumerate(development_stages, 1):
            print(f"执行阶段 {i}: {stage.__name__}")
            current_artifact = stage(current_artifact)
            results[f"stage_{i}"] = current_artifact.copy()
            
            # 检查是否满足退出条件
            if self.check_termination_condition(current_artifact):
                print(f"提前终止于阶段 {i}")
                break
        
        return results
    
    def stage1_requirement_analysis(self, artifact):
        """阶段1:需求分析"""
        requirements = artifact["requirements"]
        
        # 人类专家提供领域知识
        domain_knowledge = self.expert_knowledge.analyze_requirements(requirements)
        
        # AIGC辅助需求细化
        refined_reqs = self.aigc_component.refine_requirements(
            requirements, 
            domain_knowledge
        )
        
        artifact["domain_knowledge"] = domain_knowledge
        artifact["refined_requirements"] = refined_reqs
        
        return artifact
    
    def stage2_aigc_generation(self, artifact):
        """阶段2:AIGC生成初步代码"""
        refined_reqs = artifact["refined_requirements"]
        
        # 使用AIGC生成初始代码
        generated_code = self.aigc_component.generate_operator_from_nl(
            refined_reqs["description"]
        )
        
        artifact["generated_code"] = generated_code
        artifact["generation_metrics"] = {
            "timestamp": "2026-02-06",
            "model_version": "pyasc-codegen-v1.0",
            "generation_time": "2.3s"
        }
        
        return artifact
    
    def stage3_expert_refinement(self, artifact):
        """阶段3:专家精修"""
        raw_code = artifact["generated_code"]["operator_code"]
        
        # 专家审查并精修代码
        expert_feedback = self.expert_knowledge.review_code(raw_code)
        
        # 应用专家建议
        refined_code = self.apply_expert_suggestions(raw_code, expert_feedback)
        
        artifact["expert_feedback"] = expert_feedback
        artifact["refined_code"] = refined_code
        
        return artifact
    
    def stage4_validation(self, artifact):
        """阶段4:验证"""
        code_to_test = artifact["refined_code"]
        requirements = artifact["refined_requirements"]
        
        # 功能验证
        functional_correct = self.validation_suite.functional_test(
            code_to_test, 
            requirements
        )
        
        # 数值稳定性验证
        numerical_stable = self.validation_suite.numerical_stability_test(
            code_to_test
        )
        
        # 边界条件验证
        boundary_correct = self.validation_suite.boundary_test(code_to_test)
        
        artifact["validation_results"] = {
            "functional_correct": functional_correct,
            "numerical_stable": numerical_stable,
            "boundary_correct": boundary_correct,
            "all_passed": all([functional_correct, numerical_stable, boundary_correct])
        }
        
        return artifact
    
    def stage5_performance_tuning(self, artifact):
        """阶段5:性能调优"""
        if not artifact["validation_results"]["all_passed"]:
            print("验证未通过,跳过性能调优")
            return artifact
        
        code_to_optimize = artifact["refined_code"]
        
        # 性能分析
        perf_analysis = self.performance_analyzer.analyze(code_to_optimize)
        
        # AIGC建议优化策略
        optimization_suggestions = self.aigc_component.suggest_optimizations(
            code_to_optimize,
            perf_analysis
        )
        
        # 专家指导优化实施
        optimized_code = self.expert_knowledge.apply_optimizations(
            code_to_optimize,
            optimization_suggestions,
            perf_analysis
        )
        
        # 验证优化不影响正确性
        still_correct = self.validation_suite.functional_test(
            optimized_code,
            artifact["refined_requirements"]
        )
        
        artifact["performance_analysis"] = perf_analysis
        artifact["optimization_suggestions"] = optimization_suggestions
        artifact["optimized_code"] = optimized_code if still_correct else code_to_optimize
        artifact["optimization_applied"] = still_correct
        
        return artifact
    
    def stage6_integration(self, artifact):
        """阶段6:集成"""
        final_code = artifact.get("optimized_code", artifact.get("refined_code"))
        
        # 生成完整算子模块
        operator_module = self.create_operator_module(final_code)
        
        # 集成测试
        integration_passed = self.validation_suite.integration_test(operator_module)
        
        # 生成文档
        documentation = self.generate_documentation(
            operator_module,
            artifact["requirements"],
            artifact.get("expert_feedback", {}),
            artifact.get("performance_analysis", {})
        )
        
        artifact["final_module"] = operator_module
        artifact["integration_passed"] = integration_passed
        artifact["documentation"] = documentation
        
        return artifact
    
    def apply_expert_suggestions(self, code, feedback):
        """应用专家建议"""
        # 这里实现具体的代码改进逻辑
        improved_code = code
        
        for suggestion in feedback.get("critical_issues", []):
            if suggestion["type"] == "memory_alignment":
                improved_code = self.fix_memory_alignment(improved_code, suggestion)
            elif suggestion["type"] == "boundary_condition":
                improved_code = self.fix_boundary_condition(improved_code, suggestion)
            elif suggestion["type"] == "precision_issue":
                improved_code = self.fix_precision_issue(improved_code, suggestion)
        
        for suggestion in feedback.get("optimization_opportunities", []):
            if suggestion["priority"] == "high":
                improved_code = self.apply_high_priority_optimization(improved_code, suggestion)
        
        return improved_code

# 使用混合智能框架开发算子
hybrid_dev = HybridIntelligenceOperatorDevelopment()

requirements = {
    "operator_type": "transformer_ffn",
    "description": "实现Transformer的前馈网络,包含两个全连接层和GELU激活",
    "hidden_size": 768,
    "intermediate_size": 3072,
    "precision": "float16",
    "optimization_level": "high"
}

results = hybrid_dev.develop_operator(requirements)

print("开发结果摘要:")
print(f"最终模块: {results.get('stage_6', {}).get('final_module', '未完成')}")
print(f"集成测试: {results.get('stage_6', {}).get('integration_passed', False)}")

六、未来展望:AIGC算子开发的演进路径

6.1 短期发展(1-2年)

  1. 辅助生成模式:AIGC作为开发助手,生成代码草稿,人类专家精修
  2. 模板丰富化:建立更完善的算子模板库,覆盖更多算子类型
  3. 自动化测试:自动生成测试用例,验证算子正确性
  4. 性能预测:基于模型预测生成代码的性能特征

6.2 中期发展(3-5年)

  1. 自主优化能力:AIGC能自主应用硬件特定优化
  2. 端到端生成:从算法描述直接生成高性能算子实现
  3. 自适应调整:根据运行时反馈自动调整算子实现
  4. 跨硬件适配:同一描述生成不同硬件的最优实现

6.3 长期愿景

  1. 完全自主开发:AIGC主导算子开发全流程
  2. 新硬件协同设计:参与新硬件架构设计,优化软硬件协同
  3. 算法-硬件协同优化:同时优化算法和算子实现
  4. 自我演进系统:持续从部署中学习,不断改进算子实现

七、结语

基于pyasc语言的AIGC算子开发代表了AI自我进化的一个重要方向。CANN社区通过提供pyasc这样的专用开发语言和完整的算子生态,为这一变革奠定了坚实基础。

从仓库中活跃的项目更新可以看出(多个项目在几小时前有更新),CANN社区正以前所未有的速度演进。随着AIGC技术的成熟和算子开发模式的创新,我们正站在一个新时代的起点:AI不仅能够创造内容,更能够创造让自身运行更高效的基础组件。

未来,算子开发可能不再是少数硬件专家的专利,而是每个AI研究者都能参与的过程。这种民主化的硬件编程能力,将极大加速AI技术的发展,推动整个行业进入新的创新周期。

cann组织链接:https://atomgit.com/cann
ops-nn仓库链接:https://atomgit.com/cann/ops-nn

Logo

作为“人工智能6S店”的官方数字引擎,为AI开发者与企业提供一个覆盖软硬件全栈、一站式门户。

更多推荐